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We review recent developments in the rigorous derivation of hydrodynamic-type 
macroscopic equations from simple microscopic models: continuous time 
stochastic cellular automata. The deterministic evolution of hydrodynamic 
variables emerges as the "law of large numbe~s," which holds with probability 
one in the limit in which the ratio of the microscopic to the macroscopic spatial 
and temporal scales go to zero. We also study fluctuations in the microscopic 
system about the solution of the macroscopic equations. These can lead, in cases 
where the latter exhibit instabilities, to complete divergence in behavior between 
the two at long macroscopic times. Examples include Burgers' equation with 
shocks and diffusion-reaction equations with traveling fronts. 

KEY WORDS: Stochastic particle systems; hydrodynamic limit; fluctuation 
theory. 

1. I N T R O D U C T I O N  

Nature has a hierarchical structure and to a great extent it is possible, even 
necessary, to study different levels independently. For the world of atoms 
and molecules, the nuclei are point charges despite the complicated 
dynamics of the hadrons, and the hydrodynamic equations for fluids, the 
elucidation of which is the subject of this article, were established long 
before the atomistic structure of matter was fully accepted. Indeed, 
hydrodynamicists can be (and sometimes are) quite ignorant of atomic 
theory and of statistical mechanics. 
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The different levels are of course not completely isolated--there is no 
sharp demarcation line between an atomic beam and the jet stream. In fact, 
one of the basic dogmas of science is that the behavior at any level can be 
deduced, at least in principle, entirely from the dynamics of the level below 
it, i.e., there are no new physical laws, only new phenomena, as one goes 
from atoms to fluids. The apparent independence is due to the really 
remarkable fact that the microscopic dynamics give rise to approximate, 
but in most cases extremely accurate, autonomous macroscopic laws. The 
main physical motivation for elucidating the micro-macro connection 
comes therefore from situations where the hydrodynamic laws fail, partially 
or entirely, to describe all the phenomena of interest. 

These laws generally take the form of nonlinear partial differential 
equations, 

Ot M(r, t )=  F(M(r, t), grad M(r, t),...) (1.1) 

where M(r, t) denotes a "full" set of macroscopic variables depending on 
space and time. Examples include the heat equation and the Euler and 
Navier-Stokes equations. While M and F are specific to the phenomena 
considered, their dependence on the nature of the miroscopic constituents 
of the macroscopic objects studied is in general small. Thus, Fourier's law 
of heat conduction has the same form for solid gold and liquid water and 
the same Navier-Stokes equations describe the flow of air and the flow of 
milk. Even more remarkable, diffusion-reaction equations of similar form 
can describe both chemically reacting molecular mixtures and the 
propagation of genetic traits/1) The details of microscopic structure 
generally enter in F only through the numerical value of some parameters, 
e.g., heat conductivity, viscosity. 

The origin of the hydrodynamic laws is a consequence of the existence 
of very different spatial and temporal scales for microscopic and 
macroscopic phenomena and some very general features of the microscopic 
dynamics. Chief among these are the approximate locality and additivity of 
the interactions and the resulting local conservation laws. Consequently, 
our microscopic models can be rather crude, even blatantly wrong, and still 
give rise to correct macroscopic behavior. All that is necessary is that the 
models contain the essential features responsible for the phenomena of 
interest. 

The utility of simple models is well established for equilibrium 
behavior. The Ising spin system is used successfully to model such diverse 
phenomena as liquid vapor transitions, phase segregation (or ordering) in 
alloys, or spontaneous magnetization in anisotropic magnets. 
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There are at present no such universal Ising models for hydrodynamic 
laws. This is due in part to the fact that the phenomena are more com- 
plicated, so that even the solutions of the macroscopic equations are far 
from being clearly understood in interesting cases. This makes the analysis 
of models to give laws of type (1.1) much more difficult mathematically. 
Nevertheless the recent advances in the ability of computers to implement 
microscopic dynamics for "large" numbers of particles has shown 
dramatically how similar indeed are self-organized macroscopic evolutions 
resulting from very different microscopic models--including Ising-like 
cellular automata. 4 

While there is no rigorous derivation of fluid dynamical equations 
even for the simple lattice gas automaton of Frisch et aL (~) there has been 
much recent progress in the derivation of hydrodynamic-type laws of form 
(1.1) for models with stochastic dynamics. We believe that these models 
capture the essential features of the transition from microscopic to 
macroscopic evolutions in real physical systems. It is our purpose here to 
describe some of these results, particularly those that shed light on 
behavior beyond that contained in the macroscopic equations, in a non- 
technical way. (It is also possible to make these models entirely deter- 
ministic, albeit in a rather artificial way. We shall not discuss this here.) 

Before discussing specific models, we describe some of the general 
ideas and methods used in obtaining the macroscopic equations and going 
beyond them. We focus attention on the fact that deterministic equations 
like (1.1) correspond to the "law of large numbers" in the theory of 
probability--they are obeyed with probability approaching one (with 
respect to a given dynamics and initial ensemble) as the ratio of 
microscopic to macroscopic spatial and temporal scales goes to zero. When 
the ratio is finite there will be deviations. These will usually be small, but 
may become large in interesting cases. 

1.1. The Formula t ion  of  M a c r o s c o p i c  Laws 

The essential element in the transition from microscopic to 
macroscopic evolution is best formulated mathematically in terms of 
suitable rescalings of space and time. (4,s) By such rescalings one can take 
account in a precise way of the central fact that there are a very large 
number of atoms in a macroscopic drop of fluid, each undergoing a very 
large number of "changes" (e.g., collisions) in a macroscopic instant "dr." 

The macroscopic view is therefore a "blurred" one: summing over a large 

4 Access to the rapidly growing literature can be had via the August 1987 issue of Complex 
Systems. (2) 
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number of elementary events. This brings in the "law of large numbers," 
which is crucial for obtaining deterministic autonomous macroscopic 
equations like (1.1), not just for ensemble averages, but for the almost 
sure value of quantities that fluctuate on the microscopic scale, i.e., 
the macroscopic equations describe the actual evolution of single 
configurations of the physical system. 

This is not just a mathematical nicety; it goes to the heart of what the 
hydrodynamic equations are all about. In particular, the phenomena of 
bifurcations and the presence of multiple stationary states might be missed 
entirely if one only looks at ensemble averages. We have here a close 
correspondence to the situation at phase transitions in equilibrium 
systems,(6 8~ where it is well established that ensemble averages may not 
represent any actual realization of the system. For example, the state of 
zero magnetization of an Ising system below the critical temperature, 
obtained with periodic boundary conditions, is really a superposition 
of the pure phases with magnetizations +m*, m*4 =0, e.g., the 
magnetization/volume has a double-humped distribution sharply peaked at 
+_m*. In a similar way an ensemble average in the Rayleigh-Benard 
problem may yield a zero velocity field that really corresponds to a super- 
position of different states with rolls. Also, in Burgers' equation, which we 
shall discuss later, an ensemble average may superimpose shocks with 
different locations giving an apparent broadening not present in actual 
configurations of the system. 

Even aside from phase transitions, it is clearly important to have 
convergence on a configuration basis if the deterministic equations are to 
describe what is actually observed in an experiment. If the difference 
between actual and average behavior is overlooked, one might also come 
to the erroneous conclusion that the origin of macroscopic phenomena, 
such as diffusion, is directly attributable to the highly irregular behavior of 
trajectories of nonlinear dynamical systems. This behavior, which occurs 
already in systems with a few degrees of freedom, may in fact be important 
for the validity of the hydrodynamic laws; it does not, however, by itself 
have any intrinsic mechanism for suppression of fluctuations. Thus, the 
ensemble average of the spatial density of three hard spheres in a cube 
will approach a uniform value, but the actual behavior of any initial 
configuration will not be described by the kind of deterministic equation 
associated with macroscopic variables discussed here. 

We can illustrate some aspects of the micro-macro relation by con- 
sidering the simplest example of independent, identically distributed ran- 
dom variables xl, x2 ..... Let ~P(xi) be the distribution of xi, with m = (x~) 
its mean and ~2= ( ( x i - m )  2) its variance. Suppose now that we can only 
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see or are only interested in the effect produced by a sum of many such 
variables. The law of large numbers then asserts that the random variable 

1 U 
X x = ~  Z x, (1.2) 

i = 1  

takes the value m, with probability approaching one, as N ~ o% i.e., in the 
macroscopic limit we have deterministic behavior. To see the deviation in 
the value of X N from m for N very large, we have to magnify the scale on 
which we are looking. This can be done by considering the fluctuation 
variable 

N 

~ v = N I / 2 [ X N - m ] = N  -1/2 ~ ( x i -m)  (1.3) 
i = 1  

Then, as N--* o% ~N tends to a Gaussian random variable ~ with mean zero 
and variance ~2. We thus have here both a deterministic behavior and fluc- 
tuations about it which depend very little on the details of the microscopic 
distribution cp(x). We did not even have to say whether x is continuous or 
discrete. 

A crucial step in going from this zero-dimensional example to 
equations determining the space-time evolutions of macroscopic variables 
is that the microscopic dynamics produces "local equilibrium" states 
parametrized by the instantaneous values of the slowly varying fields 
M(r, t). These local distributions will naturally also produce fluctuations 
about the M(r, t). As long as these fluctuations remain small, they can be 
"added to M" and will evolve according to the linearization of (1.1) about 
a given solution M(r, t) with a "random source term" (Section 6). In fact, 
such fluctuations are often added in a purely heuristic way to the 
macroscopic equations(9)--we justify them in some cases. In particular, 
when the solutions of (1.1) are smooth and stable the fluctuations are 
Gaussian fields whose covariance does not grow with time. In those cases, 
however, where the hydrodynamic equations produce shock waves or have 
other instabilities these fluctuations get amplified. This leads, then, to 
significant deviations between the actual behavior of the system and that 
predicted by (1.1) over "long" times. These are the physically interesting 
situations on which we focus in this very selective review. 

The outline of the rest of this article is as follows: In Section 2 we give 
the simplest example of a microscopic dynamics, independent asymmetric 
jumps on a lattice, which leads to a (linear) equation of type (1.1) for the 
density. Interactions are introduced in Section 3 by imposing a hard core 
exclusion. This leads to Burgers' equation, which can give rise to the 
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formation of shocks. The stability of these shocks is analyzed from the 
microscopic model. We present arguments that show that the shock 
remains sharp on the microscopic scale, with the exact location of the 
interface, however, undergoing a random walk. This is in contrast to the 
independent case, where an initially sharp interface is smeared out in the 
course of time. 

In Section 4 we discuss the case of jumps with a small bias. We then 
obtain Burgers' equation with viscosity--in the proper scaling. Section 5 
describes microscopic models in which the particle number is not strictly 
conserved, but can vary "slowly." These models lead to diffusion-reaction- 
type equations. For certain initial conditions these evolve to configurations 
having traveling fronts with speeds c >~ c* > 0: the microscopic significance 
of the minimal speed c* is given. The general theory of fluctuations in these 
microscopic model systems is discussed in Section 6 and applied to the 
long-time dynamics of shocks and traveling fronts. Finally, some 
concluding remarks are made in Section 7. 

2. LATTICE GASES W I T H  S T O C H A S T I C  D Y N A M I C S  

As mentioned in the introduction, there has been much progress in 
recent years in deriving hydrodynamic equations for systems whose 
microscopic dynamics involves some stochastic elements, e.g., particles on a 
lattice with stochastic dynamics. These systems have a single locally conser- 
ved field--the (mass) density. The stochastic dynamics maintains locally an 
equilibrium distribution characterized by a density p(r, t). This density 
varies on a macroscopic scale and its time evolution is governed by a 
partial differential equation of the form (1.1) with conservation, 

~-~ p(r, t) + div j(p(r, t), grad p(r, t)) = 0 (2.1) 

To understand how such a deterministic macroscopic equation arises 
from the dynamics of many particles, we discuss first a simple example. We 
consider a system of particles on a one-dimensional lattice with lattice 
spacing a, a being a microscopic length, say a few angstroms. The particles 
jump independently with rate p/r to the right and ( 1 - p ) / v  to the left, 
0 ~< p ~< 1, ~ a typical microscopic time. The system has a continuum of 
stationary states "labeled" by the average number of particles per site, 
p ~> 0. In each steady state the number of particles n at a given site has the 
Poisson distribution (l/n!)one -p and the numbers of particles at different 
lattice sites are independent of each other. The average current across any 
bond in the steady state is j (p )=  (a /v ) (2p-1)p .  
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Now let us assume that at some initial time t = 0 our system has a 
nonuniform density, which, however, varies slowly on the microscopic 
scale, i.e., over many lattice spacings the density is essentially constant. We 
make this notion of slow variation precise by choosing some smooth 
function Po(q), Po(q) >~ O, and assuming that, as in the stationary state, each 
site has at time t = 0 an independent Poisson distribution, with the average 
number of particles on the j th  lattice site given by 

p~(j) = po( ej ) (2.2) 

j 6  aZ, the lattice with spacing a. Clearly the density gradient, measured on 
the microscopic scale (units of a), is of order e and vanishes as e --* 0. The 
macroscopic density profile Po(q), on the other hand, has some finite slope 
in general. 

Because locally the density of particles is almost stationary in time, 
many jumps are needed to produce appreciable changes. In fact, for the 
asymmetric case p r  the time needed is of order ~-1~. The scale 
appropriate for the phenomenon is then the macroscopic scale: space and 
time units in which the lattice spacing is ea and the mean jump time er. 
Since particles move independently, the average density is clearly governed 
by the linear equation 

~ , 1 
-~t p (q t)=--Er {P[P~(q- ea, t ) -  p~(q, t)] 

+ (1 - p)[p~(q + ea, t) - p~(q, t)-] } (2.3) 

where q e (ea)Z. In the limit e ~ 0  any smooth interpolation of p~(q, t) 
converges to the solution of the macroscopic continuum equation 

a , + a ( 2 p _ l ) ~  a -~ p(q t) -~q p(q, t) = 0 (2.4) 

which is to be solved with the initial condition p(q, O) = Po(q). 
This is not the whole story. Let n~([q, q + 6], t) be the actual number 

of particles at time t in the (macroscopic) interval [-q, q + 6 ]  containing 
6lea lattice sites. The actual density is therefore n~([q, q+6] ,  t)/(6/ea), 
which is of course a random variable. What happens now as e ~ 0 is that 
this random variable converges with probability one to the number 

l f j  +p -~ dq' p(q', t) (2.5) 

where p(q, t) is the solution of (2.4). This is the famous law of large 
numbers already alluded to in the Introduction. If it did not hold, the 
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macroscopic equation would in fact be quite useless. After all, in a 
hydrodynamic experiment we follow just one particular fluid flow. To put it 
somewhat differently: Suppose that we produce a Monte Carlo simulation 
of the lattice gas dynamics by means of a computer. Then a single run 
follows the macroscopic equation, with probability approaching one, as we 
make the lattice finer and finer. (5~ 

We may even go one step further and sample the distribution of par- 
ticles at the (macroscopic) time t at a set of lattice sites next to some point 
q. We find that for all e the distributions at different sites are independent 
Poisson with densities that, in the limit e-* 0, become equal to the density 
p(q, t), characteristic of this local equilibrium. To be more precise, the joint 
distribution of particles at any fixed set of lattice sites { e - l q + j l  ..... 
e - l q + j m  } is, in the limit ~--.0, the same as in a uniform equilibrium 
system with average density p = p(q, t). 

The reader might find the introduction of the parameter e fairly 
artificial. It should be regarded just as a mathematically convenient device 
to separate the microscopic and macroscopic scales. In the limit ~--* 0 the 
separation is perfect. For  a real fluid we should think of e as the magnitude 
of typical fractional changes of the density or velocity on the scale of inter- 
molecular distances. So ~ is small, but not strictly zero. By how much the 
limit e ~ 0 is an overidealization depends on the particular situation and 
we will discuss later possibly large corrections to the deterministic 
hydrodynamic equations that arise when e r 0, i.e., due to the graininess of 
matter. 

3. THE B U R G E R S  E Q U A T I O N  A N D  THE P R O P A G A T I O N  OF 
S H O C K S  

The linearity of Eq. (2.4) comes from the absence of any interaction 
between the particles in our model. Let us now introduce a very simple 
interaction: we require that there can be at most one particle per lattice 
site. The dynamics is as before, except that when a particle tries to jump to 
a site that is already occupied, it just does not. The analysis of the model is 
difficult, because the hard core exclusion produces dynamic correlations. 
Fortunately, the steady states are still simple: At each site, independently of 
the others, there is a particle with probability p and no particle with 
probability 1 -  p, p the same at all sites. As in the case of independent 
particles, there is a one-parameter family of steady states, one for each p, 
0 ~< p ~< 1, p = 1 being the maximal number of particles per site. The steady- 
state particle current is now 

j ( p )  = (a/r)  pp(1  - p)  - (a/~)(1 - p)p(1 - p) = (a/~)(2p - 1)p(1 - p) (3.1) 
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This suggests that the appropriate macroscopic equation is 

8 
~p(q,  t)+ a 1)= 7- {p(q, t)]} = 0  (3.2) ( 2 p -  t ) [ 1  "c oq 

which is the well-known Burgers equation with zero viscosity. (1~ it 
has been proven that, under the same scaling as before (lattice spacing ea, 
average jump time er), the actual density of particles converges to the 
solution of Burgers' equation. (11 13) 

Burgers' equation is a textbook example for shock formation. Even 
with smooth initial data, the solution may develop discontinuities in the 
course of time due to the fact that the "velocity" of a fluid element, 
j(p)/p = (a/r) (2p-1)(1-p) ,  decreases with density. Solving the equation, 
one finds that the motion of the shock is determined only if the Burgers 
equation is supplemented with the condition that the entropy has to 
increase. This agrees with the solution obtained by first adding a viscosity 
term v 02p(q, t)/Oq 2 on the right side of (3.2) and then considering the 
solution when v ~ 0. There is of course no room for such extra conditions 
in our microscopic model--the dynamics of particles is sufficient now to 
produce a unique evolution. In fact, the theorem mentioned asserts that as 

-~0, the convergence of the actual particle density is to the "right" 
solution, namely the one satisfying the entropy condition. 

The shock formation has a disturbing aspect: the Burgers equation 
itself tells us that our basic assumption of slow variation breaks down com- 
pletely along the exceptional space time curves where there is a discon- 
tinuity in the density. For sure, the density at the shock does not vary 
slowly. To understand what happens at the shock we have to study finer, 
more microscopic structural details of the lattice gas; Burgers' equation 
itself is too crude a description of the phenomenon. 

We might as well then impose a "pure" shock initially by setting 

f p _  for q<O 
Po(q) (3.3) 

p+ for q > 0  

with 0 ~< p_ < p + ~< 1. If p < 1/2, then the shock spreads out linearly in a 
rarefication fan. On the other hand, if p > 1/2, i.e., drift to the right, the 
sharp shock is maintained and travels with velocity 

a 
v , = -  ( 2 p -  1 ) ( 1 - p _  - p + )  (3.4) "c 

as required by mass conservation. To the left of v, t the density is p_ and to 
the right of vst it is p +. In the limit e --, 0, this is also the evolution of the 
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particle model on the macroscopic scale of length and time. Note that, 
because of piling up, v, may be negative, although particles are pushed to 
the right. 

In order to understand the shock dynamics on a microscopic scale 
when e ~ 0 it is useful to first have a look at the independent particle model 
with the same step initial condition (3.3). Solving Eq. (2.3), we obtain 
approximately an error function which interpolates between p_ and p+,  
has center at (a/~)(2p- 1), and has a typical width a(et/~) 1/2. Therefore, on 
the time scale e lz the shock is sharp, i.e., of the order of the lattice 
spacing, and travels with velocity (a/r)(2p- 1 ). For  longer times the shock 
gets washed out. Near the symmetry point the statistics of particles is local 
equilibrium, corresponding to independent Poisson distributions, with 
density (p + + p _ )/2. 

One may be tempted to conjecture that due to viscosity there should 
be a similar behavior for the model with hard core exclusion. We note, 
however, that in contrast to the linear case, the solution to the Burgers 
equation with an added viscosity term v O2p(q, t)/~q2 has a shape that 
remains fixed for all times and travels with velocity Vs. In addition, for the 
lattice gas with 1 - p + - p = 0, i.e., Vs = 0, one can prove (14"~5) that if one 
samples the statistics of particles on lattice sites around the origin, then in 
the long run one will find half of the time the density p + and half of the 
time the density p_ .  This is completely different from the behavior of 
independent particles. Apparently the discontinuity remains "sharp" even 
on a microscopic scale, but fluctuates back and forth in a random fashion. 
Numerical simulations of the lattice gas indicate a shock width of about 
ten lattice sites. (16) 

Clearly, the issue here is to understand how the microscopic density 
fluctuations manifest themselves on a macroscopic scale. In a phenome- 
nological approach, one would add ad hoc fluctuations to Burgers' 
equation. A better founded approach is the use of hydrodynamic fluc- 
tuation theory, of interest in its own right. In our case the fluctuations are 
dictated by the lattice gas model. Let us here just describe what fluctuating 
hydrodynamics predicts about the shock dynamics, postponing a more 
detailed analysis of fluctuations to Section 6. 

The central point is that, on the time scale considered, the completely 
uncorrelated equilibrium fluctuations present initially just propagate deter- 
ministically according to the linearized equation. To the left of the shock 
these fluctuations propagate with velocity (a / r ) (2p-1) (1 -2p_)  and to 
the right with velocity (a/z)(2p- 1)(1 - 2 p  + ). When they meet they have to 
satisfy mass balance. This results in an instantaneous shock velocity 
v(t) = vs + ~ ~(t), where ~(t) is white noise with a strength depending on 
p + and p_.  Thus, the shock makes a random walk with mean square dis- 
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placement of order et. To have an amplification to the macroscopic scale 
we have to follow the shock over a much longer time scale than considered 
before. Only after e -2 jumps per particle is there a displacement 
macroscopic size. Such long times go beyond the domain of validity of the 
hydrodynamic fluctuation theory. A priori, it is not clear whether the 
dynamical behavior hinted at actually persists on the macroscopic scale. 
Nevertheless, as already mentioned, a detailed dynamical analysis proves 
the picture set forth to be correct, at least for particular cases. The analysis 
is more complete and gives the same results for a closely related model in 
which the macroscopic equation is Burgers' equation with viscosity. This is 
described in the next section. 

4. WEAKLY A S Y M M E T R I C  LATTICE GAS 

We have deliberately saved the symmetric case p = 1/2. Equations (2.4) 
and (3.2) then degenerate to 

0 
~tp( q, t ) = 0  (4.1) 

which tells us that after e ~ jumps per particle the macroscopic density 
profile has not yet changed. For p = 1/2 the average steady-state current 
vanishes by symmetry, so to lowest order the current should be propor- 
tional to the density gradient (Fick's law of diffusion), i.e., of order e. 
Therefore we expect to see appreciable changes in the density only after e -2 
jumps per particle. The macroscopic equation on the new time scale is the 
(generally nonlinear) diffusion equation, 

0 -~ p(q, t) + ~qj(q, t ) = 0  

(4.2) 

j(q, t)= --D(p(q, t))~q p(q, t) 

with D(p) the bulk diffusion coefficient. 
For independent particles, going back to Eq. (2.3), it is easy to verify 

that our reasoning is correct. On the time scale e-2z the density is 
governed by the diffusion equation 

0 a 2 0 2 
~ p(q, t)=--~--~q2p( q, t) (4.3) 

Because there is no interaction, D is independent of p. The hard core lattice 
gas requires a little more analysis. The net result is that the macroscopic 

822)5a/5-6-8 
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equation, on the time scale e-2r, is again (4.3). That D turns out to be 
independent of p for this case is due to particular cancellations. In fact, 
recently the nonlinear diffusion equation was derived for a large class of 
interacting stochastic particle systems, ~1v'~8) one of the most beautiful 
results in the field. 

We want now to bias the lattice gas in such a way that the 
macroscopic equation is the Burgers equation with a viscosity term. This is 
very analogous to going from the Euler to the Navier-Stokes equations. 
Since the effect of dissipation manifests itself only on the diffusive time scale 
e-z/:, the proper choice of microscopic dynamics is: particles jump with 
rate (1 + e~)/2z to the right and with rate (1 -e~)/2z to the left, subject to 
the hard core exclusion. This is called, for obvious reasons, the weakly 
asymmetric jump process with exclusion. It has been proven that on the 
macroscopic scale the density is governed by the viscous Burgers equation 

0 2 

~p(q, t)+~-~q [p(q, t ) (1 -p (q ,  t))] =V-~q2p(q, t) (4.4) 

with v = a2/z. Together with the validity of (4.4), one also proves for this 
model the law of large numbers and the local equilibrium structure in the 
form already explained in Section 3. (19) 

We note here that Eqs. (2.4) and (3.2) are invariant under the transfor- 
mation q ~ 2q, t ~ 2t, while (4.2) and (4.3) have as their invariance group 
q--, 2q, t--, 22t. This permitted the construction of particle models from 
which the above equations were obtained solely by going from the 
microscopic to the macroscopic scale (the appropriate scalings dictated by 
the invariance groups of the macroscopic equation) without any 
modification of the dynamics. Equation (4.4), on the other hand, does not 
have any such scale invariance. Consequently, its derivation from a 
microscopic model involved the modification of the dynamics with e. We 
sometimes refer to models of this type as kinetic-like in contrast to pure 
hydrodynamic models in which the dynamics is independent of e. While 
kinetic-like models are in some ways less satisfactory from the 
mathematical point of view, this is not so important physically, where e is 
fixed anyway. It does indicate, however, that while one may hope to derive 
the Euler equations, which have the q ~ 2q, t --* 2t invariance, as a scaling 
limit, the Navier-Stokes equations, which are analogous to (4.4), must be 
considered as the first term in some kind of asymptotic series. 

5. R E A C T I O N - D I F F U S I O N  E Q U A T I O N S  

Propagating fronts or traveling waves are common structures, which 
appear also in equations not of conservation type. Some of these exhibit 
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interesting "velocity selection" mechanisms and various kinds of 
instabilities. The long-time dynamics in these systems can be expected to 
exhibit correspondingly varying phenomena on the microscopic level. 
These may be quite different from that found for the shock dynamics 
described by the Burgers equation. To illustrate this, we now discuss 
equations of the reaction-diffusion type exhibiting such structures. 

One of the (many) physical examples that can be modeled by such an 
equation is a system in which various chemicals diffuse in an aqueous 
solution and react with each other. If we restrict our attention to one 
species, then its mass is no longer conserved. We model the diffusing par- 
ticles again as a lattice gas with the constraint of single-site occupancy. No 
external force is driving the system. Therefore we set p = 1/2. In addition to 
particles jumping to neighboring empty sites, it is now also possible to 
create new particles at empty sites and annihilate particles at occupied sites. 
Let c~ (t/) be the rate for creating a particle at site j when the configuration 
is r/. Correspondingly, let c 7 07) be the rate for annihilating a particle at site 
j. Typically c+(r/) will depend only on the occupancy of lattice sites in the 
neighborhood o f j  and it does so in a translation-invariant manner. 

To have a meaningful scaling limit, in which there is a finite creation 
and destruction rate per unit volume, these rates have to be taken propor- 
tional to g2 on the microscopic scale, i.e., during times of the order of an 
average jump time the creation/annihilation per lattice site is only of the 
order e 2. This is to be compared with the weakly asymmetric lattice gas, 
where the corresponding coefficient was e, since the whole process is con- 
servative. Thus, between any two creation/annihilation events the diffusion 
has plenty of time to equilibrate the system locally. Therefore, in the 
macroscopic equation the (local) equilibrium production rate will appear. 
Indeed, it can be shown, <2~ for very general rates e2c+(q), that in the 
scaling limit e--*0 the density is governed by the reaction diffusion 
equation 

-~p(q t)=V~q2p(q, t)+ F(p(q, t)) (5.1) 

F(p) is obtained by averaging the rates c +, c over a local equilibrium dis- 
tribution in which the sites are occupied with probability p and empty with 
probability 1 - p ,  independent of each other. If we denote this equilibrium 
average by ( . ) o ,  then 

F(p) = (c+(tl) )p - (c/-(q) ) o (5.2) 

which, by translation invariance, is independent ofj .  
Let us consider now two examples for which Eq. (5.2) has traveling 

front solutions with different degrees of stability. In both cases cg (~/)=0, 
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so we have only creations and the ultimate stable steady state is one with 
all sites occupied. The creation rate is e2cf (r/) with 

c f  (t/) = �89 1)+ t / ( j+  1)][1 - q(j)] (case I) (5.3) 

and 

c f - ( t l )= �89  ] (case II) 

(5.4) 

In words, case I corresponds to a particle "giving birth" on a neighboring 
empty site with macroscopic rate 2/2, while in case II it is necessary to have 
two particles on adjacent sites either to their right or left to produce a new 
particle on an empty site (binary production(~'23)). Substituting the 
corresponding values of F(p) computed from (5.2) into (5.1) gives 

0 a 2 0 2 

o t p ( q , t ) = T ~ q 2 p ( q , t ) + 2 p ( l - p ) ,  O ~ p < l  (5.5) 

0 a z 0 2 
~ t p ( q , t ) = T ~ q 2 p ( q , t ) + 2 p 2 ( 1 - - p ) ,  0<-Gp~<l (5.6) 

Equations (5.5) and (5.6) are classical reaction-diffusion-type 
equations first studied by Fisher (z4) as models of genetic trait diffusion and 
investigated further by Kolmogorov et al. (25) (KPP) and many others in 
many contexts; see ref. 1. We refer to the first of these equations as the 
KPP  equation and to the second as the binary production equation. 

It is clear that in both cases the macroscopic equations (5.5) and (5.6) 
have exactly two stationary spatially uniform solutions, p = 1 and p = 0. 
These correspond of course to translation-invariant stationary states of the 
microscopic model: all sites occupied or all sites empty. The solution p = 1 
is stable, while p = 0 is unstable against perturbations. We are interested in 
the time evolution of initial densities p(q, 0) that connect stable to unstable 
fixed points, i.e., 

p(x, 0)___,J'l as x--* -oo  (5.7) t0 as  x - *  q-oo 

It was shown in ref. 25 (see also ref. 26) that both equations have 
traveling front solutions of the form p(q, t) = u(q - ct) with u(q) a smooth, 
monotone-decreasing function of q, u ( - c ~ ) =  1, u(oo)=0.  Such solutions 
exist for all values of c greater than some minimal speed c*>0 ,  
c* =c* =2(2a2/r) 1/2. (There are of course also solutions moving in the 
opposite direction.) 
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The traveling front solutions u(q) all decay exponentially with q---the 
larger the speed, the slower the decay. This can be understood in terms of 
the rate of particle production F(p). Integrating (5.1) over q, one obtains 
the speed of a stationary front as c = ~ F(u(q)) dq, which, using (5.5) or 
(5.6), clearly increases with the size of the transition region. The existence 
of a minimum speed is not so obvious--it is connected with the fact that 
p(q, t) must be in the interval [-0, 1 ]. KPP  further showed that given any 
initial p(q, 0) that decays "rapidly enough" to zero as q ~  0% e.g., 
p(q, 0 ) = 0  for q >q0, then p(q, t) "converges" as t--* oo to the traveling 
front solution u*(q-c ' t ) .  The front with smallest speed thus has as its 
basin of attraction all rapidly decaying initial density profiles. This can be 
thought of as a "velocity selection principle ''(27) and we may naturally ask 
whether this can be understood from the microscopic model. 

The question was answered affirmatively in ref. 28 for the KPP case. It 
was shown there that for the creation rate (5.3), starting with initial states 
of the system for which the average density decays, as j -*  0% in an 
integrable way so that there is, with probability one, a last particle, the 
state as seen from that particle converges to a stationary state with a unique 
velocity v(e). Furthermore, this velocity (properly scaled) converges to c*, 
i.e., e- lv (e )~  c* as e ~ 0 .  The same result presumably holds also for the 
binary production. 

6. L O N G - T I M E  D Y N A M I C S  A N D  A M P L I F I C A T I O N  OF 
F L U C T U A T I O N S  

So far we have tried to show how hydrodynamic equations emerge as 
the microscopic and macroscopic scales become separated, i.e., as e--* 0. 
These results hold for fixed macroscopic times and imply that for small but 
fixed e the particles follow "closely" the solution of the macroscopic 
equation for microscopic times of order e 1~ or e 2r, depending on the 
model. More precisely, the derivations prove that the deviation from the 
solution of the hydrodynamic equation, call it the remainder R(e, t), goes 
to zero for fixed macroscopic time t when e ~ 0 .  They leave open the 
question of how R(e, t) grows with t for fixed e. This is the problem we 
want to study now for the models discussed before. For example, for the 
weakly asymmetric lattice gas with an initially sharp step our theorem tells 
us that, when e ~ 0, the (microscopic) density profile follows, when looked 
at on a macroscopic scale, the solution of Burgers' equation with step 
initial conditions. We want to know what happens to the particles for 
microscopic times larger than e-2~. 

To address the question of deviations from hydrodynamic behavior, it 
is natural to ask whether the macroscopic solution under consideration is 
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stable against small perturbations, i.e., whether all the eigenvalues of the 
linearization have negative real parts. If so, one may argue that the noise of 
the microscopic dynamics can be considered as such a small perturbation 
and hence the actual density profile should have only small deviations from 
the macroscopic solution. (We ignore here highly improbable fluctuations 
to some other stable solution.) If, on the other hand, the solution is 
unstable, the dynamical mechanism of amplification of intrinsic 
microscopic fluctuations has to be investigated, a task outside the realm of 
the macroscopic equation. 

In Section 1, Equations (1.2) and (1.3), we noted how a refinement of 
the law of large numbers is provided by the central limit theorem. Since the 
macroscopic equation is such a law of large numbers, here there also will 
be such corrections, except that, instead of a single variable xj we have to 
consider now all macroscopic variables simultaneously. There is in fact a 
quasimacroscopic theory, known as hydrodynamic fluctuation theory, 
where, on a more or less heuristic basis, small Gaussian noise terms are 
added to the deterministic hydrodynamic equation. We now briefly 
describe this theory in the context of the models we have introduced, where 
it can in fact be proven rigorously, albeit again only for fixed macroscopic 
times when fluctuations are indeed small. Nevertheless, as we shall see, 
these fluctuations provide clues to the actual long-time behavior, to which 
we return afterward. 

Let n~([q,q+6],t)  be the actual number of particles in the 
macroscopic interval [q, q + f ]  at the macroscopic time t ( ~  ~, ~-2z, 
depending on the model). Our derivations assert that with probability one 

fqt+6 lim (ea)n~([q, q+6], t )=  dq' p(q', t) (6.1) 
e ~ O  

where p(q, t) is the solution of the macroscopic equation. This is the law of 
large numbers. We now write the number of particles in [q, q + 6] as its 
average value plus a (small) deviation, 

ean~([q,q+6], t )=ea<n~([q,q+6], t )> +51/2  dq'~(q' , t )  (6.2) 

Since n~([q, q + (5], t) is a sum over roughly e-~ terms, typical fluctuations 
should be of the order 1/xF.  We therefore normalized the second term on 
the right-hand side of (6.2) so as to have ~(q, t) of order one. Of course, 
(6.2) is a mere tautology. The crux is that is that in the limit ~ ~ 0 the 
statistics of the fluctuations simplify and become Gaussian. 

More precisely, one proves that 

lim ~(q, t ) =  ~(q, t) (6.3) 
~ 0  



Microscopic Models of Hydrodynamic Behavior 857 

in the sense that joint distributions of the left-hand side converge to those 
of the right-hand side, (2~ 32) where the ~(q, t) are Gaussian random 
variables governed by a Langevin equation of the form 

~t ~(q' t)=Lt~(q, t) + W(q, t) (6.4) 

Here L, is the linear operator obtained by linearizing the macroscopic 
equation around the solution p(q, t) under consideration. W(q, t) are 
Gaussian fluctuating forces with mean zero. Their covariance is of the 
general form 

(W(q, t) W(q', t') ) = 6 ( t -  t') R,(q, q') (6.5) 

where the noise covariance R,(q,q') has to be computed from the 
microscopic dynamics. For conservative-type equations Rt(q, q') may also 
be obtained through a time-dependent generalization of the fluctuation- 
dissipation theorem. Physically, W(q, t) represents the instantaneous 
noisiness of the system. Since the noise is small (of order x/-~), it will in the 
course of time be either damped or amplified, according to the linearized 
equation. 

Applying the above scheme to the weakly asymmetric lattice gas [cf. 
Eq. (4.4)], one obtains the linearized operator 

(~ I~ 2 
L,~(q) = -~qq {ceil - 2p(q, t)] ~(q)} + v --0q 2 ~(q) (6.6) 

and the noise covariance 

R,(q, q')=2V~qq p(q, t )[ l  -p(q ,  t)3 ~q 6(q-q ' )  (6.7) 

For the reaction-diffusion equation (5.1) one finds the linearized operator 

6 2 
L,~(q) = v ~ ~(q) + F'(p(q, t)) ~_(q) (6.8) 

and the covariance of the fluctuating forces 

q- 2[ ( C~- (~]) ) p(q,,) -]- ( Co (rl) ) p(q,t)]~)(q -- q') (6.9) 
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see (5.2) for the definition of ( . )p .  We note that the first terms of (6.7) and 
(6.9) are the same. This is the instantaneous noise due to the diffusive 
exchange. The jump bias produces no extra noise (on this scale), whereas 
the creation and annihilation of particles are noisy, yielding the second 
term in (6.9). 

The hydrodynamic fluctuation theory does not improve on the time 
domain of the macroscopic description. It only refines its resolution. 
However, on that finer scale, the precursor of the long-time dynamics 
already may be recognized. We explain how this works by applying the 
fluctuation theory to three examples, starting with the shock front of 
Burgers' equation. 

(i) The stationary solution of the viscous Burgers equation is of the 
form p s ( q - v ~ t ) ,  p ~ ( - ~ ) = p _ ,  p , ( ~ ) = p + , p _ < p + .  In (6.6) and (6.7) 

we then set p(q, t) = p~(q - vt). Including now the fluctuations of order 
as governed by the Langevin equation (6.4), we can write the time 
evolution of the shock as 

F 
P~(q - vs t) + a l / 2 / ~  Ps(q - vst) ~(t) 

t_oq 

q 
+ (noise bounded in t ime) /+  O(e) 

(6.10) 

~(t) is a Gaussian random variable with covariance 

(~(t) 2 ) = const �9 t (6.11) 

It is suggestive to rewrite (6.10) as 

Ps(q - vt - el/2~(t)) + el/2(noise bounded in time) + O(e) (6.12) 

Thus, besides the inevitable noise, the shock picks up a random-walk-like 
displacement. Note that this in accordance with the observation made in 
Section 3. We expect then that for times of the order e-3r the statistics of 
the microscopic particle configurations is well approximated by 

p s ( q -  e l v s t -  ~(t)) (6.13) 

Each individual configuration resembles a shock profile, whose position is 
given by e l v s t+  ~(t), where ~(t) is a Gaussian random variable of order 
one on the macroscopic spatial scale; cf. ref. 33 for a partial proof. 

(ii) Another example of the power of the fluctuation theory is the 
escape from an unstable equilibrium point. (34) Here the nonlinearity of the 
reaction-diffusion equation is F ( p ) =  - V ' ( p ) ,  with V a double-well poten- 
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tial symmetric around 1/2. Initially, each site, on some bounded 
macroscopic interval, is independently occupied with probability 1/2. On 
the macroscopic scale, the system is then at the unstable point, Po(q)= 1/2. 
Density fluctuations grow exponentially in time and furnish the random 
initial data for the deterministic evolution into either one of the two poten- 
tial minima. 

(iii) The long-time dynamics of traveling fronts for reaction-diffusion 
equations depends on the precise form of the production term. Let us first 
study the KPP equation. The stability of the equation, linearized around 
the traveling front, is determined by the decay of the perturbation at 
infinity. Perturbations that decay faster than the traveling front die out in 
the course of time. If the decay is the same as that of the traveling front, the 
perturbation causes a finite displacement for long times. More slowly 
decaying perturbations blow up in the course of time. If we add noise to 
the linearized equation, then, according to (6.4) and (6.9), the density fluc- 
tuations diverge exponentially in time. There is no distinction, from this 
point of view, among fronts with different velocities: while the minimal 
velocity can be selected microscopically by observing the drift of the first 
particle, no similar selection principle comes from the analysis of the density 
fluctuations. 

The exponential growth can be understood by considering the initial 
fluctuations. Let us take the state at time zero to be given by the product 
measure with the probability that site j is occupied set equal to p(ej), with 
p(q) being a traveling front for the KPP equation. Then the density 
fluctuations have the time-zero covariance 

(~(q, 0)~(q ' ,0) )  =6(q-q')p(q)[1 - p ( q ) ]  (6.14) 

so that the typical deviations decay for q ~  as [p(q)]l/2. Since p(q) 
decays exponentially, these typical deviations from p(q) decay much more 
slowly than p(q) itself (only one-half of the exponent). The fluctuations 
propagate according to the linearized KPP equation, which, as already 
noted, is unstable for such slowly decaying perturbations. Thus, they will 
grow exponentially in time. 

The microscopic origin of this behavior is presumably due, like the 
macroscopic one, to small density fluctuations close to where the edge 
of the front is, i.e., infinitely far, in macroscopic units (when the 
hydrodynamic scaling is considered), from the bulk of the front. Such fluc- 
tuations have time to grow and become macroscopic before the bulk of the 
front reaches the region where they were initially produced, and thus total 
density fluctuations grow very rapidly (a mechanism that might be similar 
to that observed for dendritic growth(27)). Unfortunately, a quantitative 
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microscopic analysis of such phenomena is technically very complicated 
and so far there are no results. 

The binary case considered in Section 5, Eq. (5.6), is much simpler. 
This can be easily understood microscopically: to create a new particle at j, 
two particles are needed adjacent to j. Hence, the fluctuations in the reac- 
tion rate will be very much decreased in the low-density region. In fact, one 
can compute the asymptotic behavior of the covariance for the density fluc- 
tuation field in the case of the traveling front with minimal velocity. One 
then finds a behavior like (6.12), p, now being the traveling wave solution 
of the binary production. As for Burgers' equation, this indicates that the 
shape of the traveling front is microscopically stable, so that in the long- 
time regime only random rigid shifts of the profile will be observed. 

It is quite surprising, at least for us, that the asymmetric exclusion 
shocks and the traveling fronts in the binary reaction equation have similar 
stability properties from a microscopic viewpoint. In the exclusion process 
the particle number is conserved in the microscopic evolution and the only 
dynamical fluctuations are in the current. From this we can understand 
why there is a random change in the velocity of the shock. For dif- 
fusion-reaction equations, on the other hand, the reactive part does not 
conserve the particle number. One would therefore expect weaker stability 
properties. We find, however, that because the limiting macroscopic 
equations have in both cases the same stability properties with respect to 
local perturbations, this is also the case at the microscopic level: the shape 
of the front is stable. This argues strongly in favor of the "completeness" of 
the information contained in the macroscopic equation. 

7. S U M M A R Y  

We investigated the behavior of some stochastic particle models with 
emphasis on how the macroscopic description emerges from the 
microscopic dynamics in a scaling limit. While our choice of models, par- 
ticularly the restriction to one dimension, was dictated primarily by the 
desire for simplicity of exposition, it must be admitted that even the most 
complicated models that can be treated with mathematical rigor are fairly 
primitive when compared to the complexity of even the simplest fluids 
governed by Newtonian dynamics. However, the main point we wanted to 
make and wish to emphasize again is that in these models particles move 
in a microscopic time over microscopic distances and interact with 
neighboring particles only. Therefore, the spatial degrees of freedom have 
the "right physics." In this sense these models capture, we believe, the 
essential features of real systems. They play the same role for hydro- 
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dynamics as the Ising model does for phase transitions: they show, by 
explicit analysis, the essential microscopic ingredients responsible for 
macroscopic behavior. 
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